Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38255831

RESUMO

Changes in the atmospheric CO2 concentration influence plant growth and development by affecting the morphological structure and photosynthetic performance. Despite evidence for the macro-effects of elevated CO2 concentrations on plant morphology and yield in tomato, the gene regulatory network and key genes related to cross-regulation have not been reported. To identify the hub genes and metabolic pathways involved in the response of tomato to CO2 enrichment, weighted gene co-expression network analysis was conducted using gene expression profiles obtained by RNA sequencing. The role of the photosynthesis-related gene Soly720 (Solyc01g007720) in CO2-enriched tomato plants was explored. Tomato plants responded to CO2 enrichment primarily through RNA-related pathways and the metabolism of amino acids, fatty acids, and carbohydrates. The hub genes in co-expression networks were associated with plant growth and development, including cellular components and photosynthesis. Compared to wild-type plants, transgenic plants overexpressing the Soly720 gene exhibited 13.4%, 5.5%, 8.9%, and 4.1% increases in plant height, stem diameter, leaf length, and leaf width, respectively, under high-CO2 conditions. The morphological improvements in transgenic plants were accompanied by enhancement of photosynthetic performance in terms of chlorophyll contents, photosynthetic characteristics, and key enzyme activities. This study elucidates the response network of tomato to CO2 enrichment and demonstrates the regulatory role of Soly720 in photosynthesis under high-CO2 conditions.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Dióxido de Carbono , Fotossíntese/genética , Clorofila , Plantas Geneticamente Modificadas/genética
2.
Front Plant Sci ; 13: 847202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574137

RESUMO

Plant growth and survival in nature, its growth process, will be affected by various factors from the environment, among which temperature has a greater impact. In recent years, extreme weather has frequently appeared, and the growth of crops has been increasingly affected by the environment. As an important flavoring and Chinese herbal medicine crop, Zanthoxylum bungeanum is also facing the harm of low-temperature stress. Plant hormones play a vital role in the response of plants to low temperatures. In this study, ultra-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine the hormone components of cold-tolerant and cold-sensitive varieties of Z. bungeanum. Combined with chemometric analysis and weighted gene co-expression network analysis (WGCNA), the hormone component differences and hormone response strategies of Z. bungeanum under low-temperature stress were comprehensively studied. The results showed that 45 hormones were detected in Z. bungeanum. Among them, there were 7 kinds of components with high content and were detected in both two varieties. At the late stage of low-temperature stress, the contents of abscisic acid (ABA) and ABA-glucosyl ester (ABA-GE) in Fuguhuajiao (FG) were significantly increased, and the latter served as the storage of the former to supplement the active ABA. Orthogonal partial least squares discriminant analysis (OPLS-DA) found that indole-3-carboxylic acid (ICA), indole-3-carboxaldehyde (ICAld), meta-Topolin riboside (mTR), cis-Zeatin-O-glucoside riboside (cZROG), and N6-isopentenyladenosine (IPR) in FG were the upregulated important difference components, and IPR and 2-methylthio-cis-zeatin riboside (2MeScZR) in Fengxiandahongpao (FX) were the upregulated important difference components. There were common crossing points and independent response pathways in response to low temperature in two varieties. WGCNA analysis found that the main hormone components were associated with multiple metabolic pathways including carbon, fatty acid, amino acid, and sugar metabolism, indicating that hormone regulation plays an important role in the response of Z. bungeanum to low temperature. This study clarified the hormone response mechanism of Z. bungeanum under low-temperature stress and provided a reference and basis for further improving the cold resistance of Z. bungeanum and cultivating new varieties.

3.
Int J Mol Sci ; 23(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35216434

RESUMO

Zanthoxylum bungeanum is one of the most important medicinal and edible homologous plants because of its potential health benefits and unique flavors. The chemical components in compositions and contents vary with plant genotype variations and various environmental stress conditions. Fatty acids participate in various important metabolic pathways in organisms to resist biotic and abiotic stresses. To determine the variations in metabolic profiling and genotypes, the fatty acid profiling and key differential genes under low temperature stress in two Z. bungeanum varieties, cold-tolerant (FG) and sensitive (FX), were investigated. Twelve main fatty acids were found in two Z. bungeanum varieties under cold stress. Results showed that the contents of total fatty acids and unsaturated fatty acids in FG were higher than those in FX, which made FG more resistant to low temperature. Based on the result of orthogonal partial least squares discriminant analysis, palmitic acid, isostearic acid, linolenic acid and eicosenoic acid were the important differential fatty acids in FG under cold stress, while isomyristic acid, palmitic acid, isostearic acid, stearic acid, oleic acid, linolenic acid and eicosenoic acid were the important differential fatty acids in FX. Furthermore, fatty acid synthesis pathway genes fatty acyl-ACP thioesterase A (FATA), Delta (8)-fatty-acid desaturase 2 (SLD2), protein ECERIFERUM 3 (CER3), fatty acid desaturase 3 (FAD3) and fatty acid desaturase 5 (FAD5) played key roles in FG, and SLD2, FAD5, 3-oxoacyl-[acyl-carrier-protein] synthase I (KAS I), fatty acyl-ACP thioesterase B (FATB) and acetyl-CoA carboxylase (ACC) were the key genes responding to low temperature in FX. The variation and strategies of fatty acids in two varieties of Z. bungeanum were revealed at the metabolic and molecular level. This work provides a reference for the study of chemical components in plant stress resistance.


Assuntos
Ácidos Graxos/genética , Genes de Plantas/genética , Zanthoxylum/genética , Expressão Gênica/genética , Temperatura
4.
Foods ; 10(10)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34681436

RESUMO

Volatile oils of prickly ash (Zanthoxylum) pericarps have various potential biological functions with considerable relevance to food, pharmacological, and industrial applications. The volatile profile of oils extracted from prickly ash pericarps obtained from 72 plantations in China was determined by gas chromatography and mass spectrometry. Several chemometric analyses were used to better understand the volatile oil profile differences among different pericarps and to determine the key factors that affected geographical variations in the main volatile constituents of oils. A total of 47 constituents were detected with D-limonene, alfa-myrcene, and linalool as the most abundant. The volatile profile of pericarp oils was significantly affected by prickly ash species and some environmental factors, and the key factors that affected volatile profile variations for different prickly ash species were diverse. Chemometric analyses based on the volatile oil profile could properly distinguish Z. armatum pericarps from other pericarps. This study provides comprehensive information on the volatile oil profile of pericarps from different prickly ash species and different plantations, and it can be beneficial to a system for evaluating of pericarp quality. Moreover, this study speculates on the key environmental factors that cause volatile oil variations for each species, and can help to obtain better prickly ash pericarp volatile oils by improving the cultivated environments.

5.
Foods ; 9(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207730

RESUMO

Zanthoxylum plants, important aromatic plants, have attracted considerable attention in the food, pharmacological, and industrial fields because of their potential health benefits, and they are easily accessible because of the wild distribution in most parts of China. The chemical components vary with inter and intraspecific variations, ontogenic variations, and climate and soil conditions in compositions and contents. To classify the relationships between different Zanthoxylum species and to determine the key factors that influence geographical variations in the main components of the plant, the fatty acid composition and content of 72 pericarp samples from 12 cultivation regions were measured and evaluated. Four fatty acids, palmitic acid (21.33-125.03 mg/g), oleic acid (10.66-181.37 mg/g), linoleic acid (21.98-305.32 mg/g), and linolenic acid (0.06-218.84 mg/g), were the most common fatty acid components in the Zanthoxylum pericarps. Fatty acid profiling of Zanthoxylum pericarps was significantly affected by Zanthoxylum species and geographical variations. Stearic acid and oleic acid in pericarps were typical fatty acids that distinguished Zanthoxylum species based on the result of DA. Palmitic acid, palmitoleic acid, trans-13-oleic acid, and linoleic acid were important differential indicators in distinguishing given Zanthoxylum pericarps based on the result of OPLS-DA. In different Zanthoxylum species, the geographical influence on fatty acid variations was diverse. This study provides information on how to classify the Zanthoxylum species based on pericarp fatty acid compositions and determines the key fatty acids used to classify the Zanthoxylum species.

6.
Hortic Res ; 7: 158, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33082965

RESUMO

Chinese pepper, mainly including Zanthoxylum bungeanum and Zanthoxylum armatum, is an economically important crop popular in Asian countries due to its unique taste characteristics and potential medical uses. Numerous cultivars of Chinese pepper have been developed in China through long-term domestication. To better understand the population structure, demographic history, and speciation of Chinese pepper, we performed a comprehensive analysis at a genome-wide level by analyzing 38,395 genomic SNPs that were identified in 112 cultivated and wild accessions using a high-throughput genome-wide genotyping-by-sequencing (GBS) approach. Our analysis provides genetic evidence of multiple splitting events occurring between and within species, resulting in at least four clades in Z. bungeanum and two clades in Z. armatum. Despite no evidence of recent admixture between species, we detected substantial gene flow within species. Estimates of demographic dynamics and species distribution modeling suggest that climatic oscillations during the Pleistocene (including the Penultimate Glaciation and the Last Glacial Maximum) and recent domestication events together shaped the demography and evolution of Chinese pepper. Our analyses also suggest that southeastern Gansu province is the most likely origin of Z. bungeanum in China. These findings provide comprehensive insights into genetic diversity, population structure, demography, and adaptation in Zanthoxylum.

7.
Plant Physiol Biochem ; 150: 196-203, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32155447

RESUMO

Plants can accumulate a large amount of reactive oxygen species under adverse conditions such as drought and high temperature, which seriously affect the normal growth and development of plants. The antioxidant system can scavenge the reactive oxygen species produced under drought conditions and so mitigate oxidative damage. However, the regulation patterns of many miRNAs under drought stress are still unclear. The content of antioxidant enzymes and the expression patterns of miRNAs and their target genes related to antioxidant systems were studied under drought stress in Zanthoxylum bungeanum. The results indicate that under drought stress, POD, CAT, APX, proline, MDA and related genes all show positive responses to drought, while SOD and its genes showed a negative response. It is indicated that in the antioxidant process of Z. bungeanum, POD, CAT, and APX play a major role, and SOD plays a supporting role. In addition, GUS histochemical and RT-qPCR experimental results show that the expression levels of miRNAs and their target genes are basically negatively correlated, indicating that miRNAs can inhibit the expression of related genes and are also important regulators in the antioxidant system of Z. bungeanum. According to the expression patterns of antioxidant enzymes, miRNA and its target genes under drought stress, combined with previous research results, a model of plant antioxidant mechanism was constructed to provide a reference for further understanding of plant antioxidant mechanism.


Assuntos
Secas , MicroRNAs , Oxirredutases , Estresse Fisiológico , Zanthoxylum , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Estresse Fisiológico/genética , Zanthoxylum/genética , Zanthoxylum/metabolismo
8.
Appl Plant Sci ; 6(6): e01157, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30131899

RESUMO

PREMISE OF THE STUDY: The genus Zanthoxylum in the Rutaceae family of trees and shrubs has a long history of domestication and cultivation in Asia for both economic and medicinal purposes. However, many Zanthoxylum species are morphologically similar and are easily confused. This often leads to false authentication of source materials and confusion in herbal markets, hindering their safe utilization and genetic resource conservation. DNA barcoding is a promising tool for identifying plant taxa. METHODS: We used three candidate DNA barcoding regions (ITS2, ETS, and trnH-psbA) to identify 69 accessions representing 13 Chinese Zanthoxylum species. The discriminatory capabilities of these regions were evaluated in terms of PCR amplification success, intra- and interspecific divergence, DNA barcoding gaps, and identification efficiency using the BLAST and tree-building methods. RESULTS: ITS2 proved the most useful for discriminating Chinese Zanthoxylum species, with a correct identification rate of 100%, and this region also exhibited significantly higher intra- and interspecific divergence. DISCUSSION: Phylogenetic analysis confirmed that ITS2 has a powerful discriminatory ability both at and below the species level. We confirmed that ITS2 is a powerful barcoding region for identifying Chinese Zanthoxylum species, and will be useful for analyzing and managing Chinese Zanthoxylum germplasm collections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...